On Lower and Upper Bounds of Matrices
نویسنده
چکیده
k=1 |ak|. Hardy’s inequality can be interpreted as the lp operator norm of the Cesàro matrix C, given by cj,k = 1/j, k ≤ j, and 0 otherwise, is bounded on lp and has norm ≤ p/(p − 1) (The norm is in fact p/(p − 1)). It is known that the Cesàro operator is not bounded below, or the converse of inequality (1.1) does not hold for any positive constant. However, if one assumes C acting only on non-increasing non-negative sequences in lp, then such a lower bound does exist, and this is first obtained by Lyons in [18] for the case of l2 with the best possible constant. For the general case concerning the lower bounds for an arbitrary non-negative matrix acting on non-increasing non-negative sequences in lp when p ≥ 1, Bennett [3] determined the best possible constant. When 0 < p ≤ 1, one can also consider a dual question and this has been studied in [4], [8] and [6]. Let A = (aj,k), 1 ≤ j ≤ m, 1 ≤ k ≤ n with aj,k ≥ 0, we can summarize the main results in this area in the following Theorem 1.1 ([3, Theorem 2], [6, Theorem 4]). Let x = (x1, . . . , xn), x1 ≥ . . . ≥ xn ≥ 0, p ≥ 1, 0 < q ≤ p, then (1.2) ||Ax||q ≥ λ||x||p, where ||Ax||q = m
منابع مشابه
Upper and lower bounds for numerical radii of block shifts
For an n-by-n complex matrix A in a block form with the (possibly) nonzero blocks only on the diagonal above the main one, we consider two other matrices whose nonzero entries are along the diagonal above the main one and consist of the norms or minimum moduli of the diagonal blocks of A. In this paper, we obtain two inequalities relating the numeical radii of these matrices and also determine ...
متن کاملSharp Bounds on the PI Spectral Radius
In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.
متن کاملFurther inequalities for operator space numerical radius on 2*2 operator matrices
We present some inequalities for operator space numerical radius of $2times 2$ block matrices on the matrix space $mathcal{M}_n(X)$, when $X$ is a numerical radius operator space. These inequalities contain some upper and lower bounds for operator space numerical radius.
متن کاملLower Bounds of Copson Type for Hausdorff Matrices on Weighted Sequence Spaces
Let = be a non-negative matrix. Denote by the supremum of those , satisfying the following inequality: where , , and also is increasing, non-negative sequence of real numbers. If we used instead of The purpose of this paper is to establish a Hardy type formula for , where is Hausdorff matrix and A similar result is also established for where In particular, we apply o...
متن کاملSome inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm
Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009